5,168 research outputs found

    Structure of Lanczos-Lovelock Lagrangians in Critical Dimensions

    Full text link
    The Lanczos-Lovelock models of gravity constitute the most general theories of gravity in D dimensions which satisfy (a) the principle of of equivalence, (b) the principle of general co-variance, and (c) have field equations involving derivatives of the metric tensor only up to second order. The mth order Lanczos-Lovelock Lagrangian is a polynomial of degree m in the curvature tensor. The field equations resulting from it become trivial in the critical dimension D=2mD = 2m and the action itself can be written as the integral of an exterior derivative of an expression involving the vierbeins, in the differential form language. While these results are well known, there is some controversy in the literature as to whether the Lanczos-Lovelock Lagrangian itself can be expressed as a total divergence of quantities built only from the metric and its derivatives (without using the vierbeins) in D=2mD = 2m. We settle this issue by showing that this is indeed possible and provide an algorithm for its construction. In particular, we demonstrate that, in two dimensions, R−g=∂jRjR \sqrt{-g} = \partial_j R^j for a doublet of functions Rj=(R0,R1)R^j = (R^0,R^1) which depends only on the metric and its first derivatives. We explicitly construct families of such R^j -s in two dimensions. We also address related questions regarding the Gauss-Bonnet Lagrangian in D=4D = 4. Finally, we demonstrate the relation between the Chern-Simons form and the mth order Lanczos-Lovelock Lagrangian.Comment: 15 pages, no figure

    Charged Rotating BTZ Black Hole and Thermodynamic Behavior of Field Equations at its Horizon

    Full text link
    In this paper, we study different cases of the charged rotating BTZ black hole with reference to their horizons. For the existence of these cases conditions on mass, charge and angular momentum of the black hole are obtained. It is also shown that the Einstein field equations for the charged rotating BTZ black hole at the horizon can be expressed as first law of thermodynamics, dE=TdS+ΩdJ+Φdq+PrdAdE=TdS+\Omega dJ+\Phi dq+P_{r}dA.Comment: 12 pages, 3 figure

    Combining general relativity and quantum theory: points of conflict and contact

    Get PDF
    The issues related to bringing together the principles of general relativity and quantum theory are discussed. After briefly summarising the points of conflict between the two formalisms I focus on four specific themes in which some contact has been established in the past between GR and quantum field theory: (i) The role of planck length in the microstructure of spacetime (ii) The role of quantum effects in cosmology and origin of the universe (iii) The thermodynamics of spacetimes with horizons and especially the concept of entropy related to spacetime geometry (iv) The problem of the cosmological constant.Comment: Invited Talk at "The Early Universe and Cosmological Observations: a Critical Review", UCT, Cape Town, 23-25 July,2001; to appear in Class.Quan.Gra

    Transference of Transport Anisotropy to Composite Fermions

    Get PDF
    When interacting two-dimensional electrons are placed in a large perpendicular magnetic field, to minimize their energy, they capture an even number of flux quanta and create new particles called composite fermions (CFs). These complex electron-flux-bound states offer an elegant explanation for the fractional quantum Hall effect. Furthermore, thanks to the flux attachment, the effective field vanishes at a half-filled Landau level and CFs exhibit Fermi-liquid-like properties, similar to their zero-field electron counterparts. However, being solely influenced by interactions, CFs should possess no memory whatever of the electron parameters. Here we address a fundamental question: Does an anisotropy of the electron effective mass and Fermi surface (FS) survive composite fermionization? We measure the resistance of CFs in AlAs quantum wells where electrons occupy an elliptical FS with large eccentricity and anisotropic effective mass. Similar to their electron counterparts, CFs also exhibit anisotropic transport, suggesting an anisotropy of CF effective mass and FS.Comment: 5 pages, 5 figure

    Contrast between spin and valley degrees of freedom

    Full text link
    We measure the renormalized effective mass (m*) of interacting two-dimensional electrons confined to an AlAs quantum well while we control their distribution between two spin and two valley subbands. We observe a marked contrast between the spin and valley degrees of freedom: When electrons occupy two spin subbands, m* strongly depends on the valley occupation, but not vice versa. Combining our m* data with the measured spin and valley susceptibilities, we find that the renormalized effective Lande g-factor strongly depends on valley occupation, but the renormalized conduction-band deformation potential is nearly independent of the spin occupation.Comment: 4+ pages, 2 figure

    Self-similar collapse and the structure of dark matter halos: A fluid approach

    Full text link
    We explore the dynamical restrictions on the structure of dark matter halos through a study of cosmological self-similar gravitational collapse solutions. A fluid approach to the collisionless dynamics of dark matter is developed and the resulting closed set of moment equations are solved numerically including the effect of halo velocity dispersions (both radial and tangential), for a range of spherically averaged initial density profiles. Our results highlight the importance of tangential velocity dispersions to obtain density profiles shallower than 1/r21/r^2 in the core regions, and for retaining a memory of the initial density profile, in self-similar collapse. For an isotropic core velocity dispersion only a partial memory of the initial density profile is retained. If tangential velocity dispersions in the core are constrained to be less than the radial dispersion, a cuspy core density profile shallower than 1/r1/r cannot obtain, in self-similar collapse.Comment: 25 pages, 7 figures, submitted to Ap

    Cosmological production of H_2 before the formation of the first galaxies

    Get PDF
    Previous calculations of the pregalactic chemistry have found that a small amount of H_2, x[H_2]=n[H_2]/n[H] = 2.6e-6, is produced catalytically through the H^-, H_2^+, and HeH^+ mechanisms. We revisit this standard calculation taking into account the effects of the nonthermal radiation background produced by cosmic hydrogen recombination, which is particularly effective at destroying H^- via photodetachment. We also take into consideration the non-equilibrium level populations of H_2^+, which occur since transitions among the rotational-vibrational levels are slow compared to photodissociation. The new calculation predicts a final H_2 abundance of x[H_2] = 6e-7 for the standard cosmology. This production is due almost entirely to the H^- mechanism, with ~1 per cent coming from HeH^+ and ~0.004 per cent from H_2^+. We evaluate the heating of the diffuse pregalactic gas from the chemical reactions that produce H_2 and from rotational transitions in H_2, and find them to be negligible.Comment: 13 pages, 5 figures, MNRAS submitte
    • …
    corecore